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ABSTRACT

Forecasting Volatility 

The paper explores the forecasting ability of popular volatility forecasting models

focusing on four issues: 1) the relative weighting of recent versus older observations, 2) the

emphasis placed on large shocks, 3) the estimation criteria, and 4) the trade-off in terms of

forecasting error between simple and complex models.  Like previous studies we find evidence 

that financial markets have longer memories that reflected in GARCH(1,1) model estimates. 

However, we find that the major problem is not with the exponential model but with the 

GARCH estimation procedure in that regression estimates of the GARCH model parameters

imply considerably longer memories.  While more complex models which allow a more flexible

weighting pattern than the exponential model forecast better on an in-sample basis, due to the

additional estimation error introduced by additional parameters, they forecast poorly out-of-

sample.  We find that models based on absolute return deviations generally forecast volatility

better than otherwise equivalent models based on squared return deviations - though not for

GARCH models.  Among the most popular time series models, we find that GARCH(1,1)

generally yields better forecasts than the historical standard deviation and exponentially weighted

moving average models but between GARCH and EGARCH there is no clear favorite. 

However, in terms of forecast accuracy,  all  are dominated by a simple non-linear least squares

model (developed here) based on historical absolute return deviations.
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Forecasting Volatility 

Accurate volatility forecasts are important to traders, investors, and risk managers, as well as

researchers seeking to understand market dynamics.  For example, estimates of  future volatility are

critical inputs in both option pricing models and value-at-risk models.  Such volatility forecasts may

be obtained from either time-series models or implied volatilities calculated from observed option

prices.  Although theoretically implied volatilities should reflect all available information, including

time-series information, evidence is mixed on which of the two forecasts better.  Moreover implied

volatilities cannot simultaneously be used to price the derivative assets from whose prices they are

calculated and are only available for specific time horizons for a limited set of assets.  Consequently

time-series models are the major source of volatility forecasts.

This paper examines the forecasting ability of popular time-series volatility forecasting

models and suggests alternatives.  The econometrics literature is replete with studies comparing the

forecasting ability of various time-series models.1   For instance,  Poon and Granger (2003) list 39

studies comparing the out-of-sample forecasting abilities of the GARCH(1,1) model and the

historical variance.2   However, our approach differs from most previous studies in that we seek to

determine why some models forecast better than others exploring four issues: 1) the relative

weighting of recent versus older observations, 2) the emphasis placed on large shocks, 3) the

importance of the estimation criteria, and 4) the trade-off in terms of forecasting error between

simple, but possibly incomplete, forecasting models and more complex models which may be more

realistic but add estimation error. While the first issue, the proper weighting of recent versus older

observations, has received considerable attention in the literature, the other three have  not.   

We choose models, data series, and forecast horizons which are in common usage.  For

instance, while many extant studies compare the ability of various models to forecast volatility in

the  only the next period, e.g. the next day if the model was estimated using daily data, most uses of
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volatility forecasts, such as for option pricing and value-at-risk models, are for much longer

horizons.  Accordingly, we compare the ability of the models to forecast volatility over horizons of

10, 20, 40, 80, and 120 trading days.  We also restrict our focus to commonly used volatility

forecasting models, such as the historical standard deviation, the GARCH(1,1) model, Riskmetrics’s

exponentially weighted moving average model, and on alternatives which can be easily

implemented using standard statistics software.  We base our forecasts on daily data since those are

the data sets available to most forecasters.3   To ensure generality, we compare forecasting ability

across a  variety of markets: the S&P 500 Index, the Deutschmark/Dollar exchange rate, the 3-

month Eurodollar rate, the 10-year Treasury Bond rate, and five equities: Boeing, Exxon,

International Paper, 3M, and McDonald’s. 

One issue explored in the paper is the proper weighting of recent versus older observations.   

Like others, we find evidence that GARCH(1,1) puts too much weight on recent observations

relative to older observations.  However, despite the attention this issue has received, we find that

out-of-sample forecast accuracy is fairly insensitive to the weighting scheme.

A second issue is which estimation criterion yields the best forecast.  For instance, we

construct a non-linear least squares regression model which is structurally identical to a

GARCH(1,1) model but is estimated using a two stage least squares procedure rather than

maximum likelihood.  We find that the parameters estimated using least squares imply considerably

longer memories that the GARCH model and generate better forecasts in-sample.  However, out-of-

sample results are mixed.

Third, we explore the trade-off between model complexity and forecast error.  A number of

models, including GARCH(1,1), impose a functional form in which the weights attached to squared

return observations decline exponentially as one moves back in time.  We find that a model in

which the depreciation rate slows as one moves back in time improves in-sample forecast accuracy. 
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However, because this more flexible model involves additional parameters, estimation error is

increased and the more complicated model does not generally forecast as well out-of-sample. 

A fourth issue is whether the popular models attach too much weight to large shocks which

may or may not reoccur.  For instance, since both the historical standard deviation and the

GARCH(1,1) forecasts are functions of the squared surprise returns, a single  large return deviation

has a large impact on the volatility forecast.  Except within the GARCH family, we find that models

based on absolute return innovations generally forecast better than otherwise equivalent models

based on squared deviations. 

While no one model forecasts best in all markets in all circumstances, we find that a simple

non-linear least squares model based on past absolute return innovations, which we develop,

forecasts best in most markets at most horizons than the methods currently in use.

The remainder of the paper is organized as follows.  In the next section, we explore what we

term linear squared deviation (or LSD) models focusing on the three most widely used volatility

forecasting models: the historical standard deviation, the exponentially weighted moving average

model and the GARCH(1,1) model.  We also develop a non-linear least squares models which is

structurally identical to the GARCH(1,1) model but estimated differently.  Our data sets and

estimation procedures are described in section II.  In section III, we explore the question of the

optimal weighting of more recent as opposed to older observations and the appropriateness of the

exponential weights structure common most popular models.  Out-of-sample forecasting ability is

compared in IV.  In section V, we turn to our fourth issue and compare models based on absolute

return deviations to those based on squared deviations.  Section VI concludes the paper.
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I.  Linear Squared Deviation Models of Financial Market Volatility

  While countless time-series volatility forecasting models have been proposed by

econometricians, in terms of  usage by market professionals and textbook attention, three  clearly

dominate: (1) the sample variance or standard deviation of returns calculated over some recent

period, (2) an exponentially weighted moving average of the squared surprise returns and (3)

Bollerslev’s GARCH(1,1) model.  All three belong to what might be called the linear squared

deviation (LSD) class of estimators in that the forecast variance is a linear combination of the

squared deviations of recent returns from their expected value.  In the case of the historical variance,

each squared deviation (or observation) back to a chosen cutoff date is weighted equally while

observations prior to the chosen cutoff  receive a zero weight.   In the exponentially weighted

moving average and GARCH (1,1)  models, the weights decline exponentially.  In other words, the

weight attached to observation t-(j+1) is a fixed proportion, $, of the weight attached to observation

t-j.  We consider the three in turn.

A.  The Historical Variance.

Letting Rt = ln(Pt/Pt-1) represent daily returns on a financial asset,4 the simplest forecast of

the volatility of Rt over the future period from time t+1 through t+s is the sample standard deviation

or variance of returns from the recent past.  Derivatives textbooks commonly recommend this

procedure.  We calculate the historical variance, VAR(n), over the n day historical period: 

where   and : is the expected return.5   This estimator assigns each squared return

deviation, , after time t-n a weight of 1/n while observations before t-n receive a weight of zero. 
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(2)

(3)

An obvious issue in applying this procedure is choosing the cutoff date n.   While setting the length

of the period used to calculate historical volatility, n, equal to the length of the forecast period, s, is

a common convention, Figlewski (1997) finds that forecast errors are generally lower if the

historical variance is calculated over a much longer period.  Accordingly, we consider a variety of

sample period lengths.   

B.  Exponentially Weighted Moving Average.

The exponentially weighted moving average (EWMA) forecasts volatility for the next day as 

where .  An obvious issue is the value for exponentially declining weight $.  By far the

most well known user of the EWMA is Riskmetrics which uses it for its Value-at-risk model.  Since

Riskmetrics sets $=.94 (see Riskmetrics, 1996), we use this parameter for our estimations.   It is

easily shown by successive substitution in equation 2  that the implied forecast for a future time

period t+k is identical to that for period t+1, i.e., vt+k = vt+1 so the EWMA forecast of average

volatility over an interval from t to t+s, which we label EWMAt, is 

C.  The GARCH(1,1) model.

The GARCH(1,1) model is similar to the EWMA model but adds a mean reversion term. 

The GARCH(1,1) model assumes that the log-return at time t, Rt, is normally distributed with mean

: and variance vt and that vt follows the process:
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(4)

(5)

(6)

(7)

Since , , successive substitution

back to time t-j yields the alternative expression of the GARCH(1,1) model:

where .  As equation 5 makes clear, in the GARCH(1,1) forecast of the

variance at time t+1, the squared return deviation at time t receives the  weight, "1, the squared

deviation at time t-1 receives a weight of "1$, and (assuming $<1) the weights decline

exponentially.  Since Et(rt+1
2) = vt+1, successive forward substitution yields the expression for the

expected volatility at a future time t+k based on the information available at time t:

If ("1+ $)<1, the k-step ahead volatility forecast declines from vt+1 toward the unconditional

variance at the rate ("1+$) as k increases while the weight attached to past observations declines at

the rate $.  The forecast volatility over the future period from t+1 through t+s, which we label

“GARCHt ”, is an average of the volatility expected each day from t to t+s hence:

where  and .  Note that, in the

GARCH volatility forecast for the interval from t+1 to t+s, the weights attached to successive past

observations decline exponentially. 
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D.  Previous Comparisons.

While numerous studies have compared the forecasting abilities of the historical variance

and GARCH models, no clear winner has emerged.  In an thorough review of 39 such studies, Poon

and Granger (2003) find that 22 find that historical volatility forecasts implied volatility better out-

of-sample while 17 find that GARCH models (not necessarily GARCH(1,1)) forecast better.

E.  The Restricted  Least Squares Estimator and the Estimation Criterion.

Several past studies, such as Pagan and Schwert (1990), West and Cho (1995) and Lopez

(2001), have considered the forecasting ability of linear regression models of the form:

.  These models have several problems: (1) the estimated coefficients, "j

usually don’t decline in an orderly fashion as j increases,6 (2) they only incorporate a few recent

observations (commonly 8 to 15), and (3) (and relatedly) they don’t forecast out-of-sample very

well.  We specify a non-linear OLS model which avoids these problems.

While the GARCH(1,1) estimates of the parameters ", 8, and $ in equation 7 are obtained

by first estimating the parameters "0, "1, and $ in equation 4 using maximum likelihood, it is also

possible to estimate the parameters in equation 7 using non-linear least squares.  Letting AV(s)t

represent the actual realized variance over the period from t+1 through t+s. i.e.,

, ", 8, and $ can be estimated by applying least squares to the equation pair:

We label the resulting estimates of equation 8  the “restricted least squares” (or RLS) model.  It is

“restricted” in that the coefficients of r2
t-j are forced to decline exponentially as j increases and non-
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linear due to the $j term .  Once the parameters ", $, and 8 have been estimated, the RLS forecast of

volatility from t+1 to t+s is generated as:

Note that equations 7 and 9 are structurally identical; that is the GARCH and RLS forecasts

only differ in that they employ different estimates for ", $, and 8. While GARCH chooses the

parameter estimates which maximize the likelihood of observing rt, RLS chooses parameters which

minimize the sum of squared errors of AV(s)t.  Consequently, the question arises whether the

estimated parameters differ substantially and, if so, which forecast better.

II.  Data and Procedures.

We compare the forecasting ability of these four models for four financial series: the S&P

500 Index, the Deutschmark/Dollar exchange rate, the 3-month Eurodollar rate, the 10-year

Treasury Bond rate, and five equities chosen from those in the Dow-Jones Index: Boeing, Exxon,

International Paper, 3M, and McDonald’s.  Daily price data for the five equities for the period

7/2/62 to 12/30/94 were obtained from CRSP tapes as were prices for the S&P 500 index (7/2/62-

12/29/95).  Daily interest rate and exchange rate data were obtained from Federal Reserve Board

files for the periods: 1/2/62-6/13/97 for the 10 year bond rate, 1/1/73-6/20/97 for the Eurodollar rate,

and 1/1/71-6/30/97 for the Deutschemark/Dollar exchange rate.  Daily log returns are defined as Rt

= ln(Pt/Pt-1) and daily return deviations or innovations are defined as rt = Rt-: where : is measured

as the mean of Rt over the entire data period. 

Our primary measure of forecasting ability is the root mean squared forecast error (RMSFE)

measured in terms of the difference between actual and forecast annualized standard deviation of
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returns.   For each forecast period beginning on day t+1 and extending through day t+s, we calculate

the actual annualized standard deviation of returns as .  The root mean

squared forecast error is then measured as 

where FSTD(s)m is the forecast standard deviation (also annualized) for an s day horizon beginning

on day m using one of the four forecasting procedures outlined in section I.  M represents the

number of forecast periods as reported in the tables below.7  One issue addressed by Poon and

Granger (2003) is whether volatility forecast errors are best measured in terms of the standard

deviation or variance.  As they point out, when the RMSFE is measured in terms of the variance, a

few outliers tend to dominate the results.  In addition, derivative prices are roughly proportional to

the standard deviation.  Consequently we define the RMSFE (and mean absolute deviation) in terms

of the standard deviation.  In Appendix B, we also report comparisons based on mean absolute

forecast errors.  Both metrics yield similar conclusions.

III.  Estimation and Weighting Issues.

A.  In-sample Comparisons of Popular Models.

To explore why the models forecast differently it is helpful to first consider in-sample results

before turning to the more important out-of-sample forecasts.  In-sample RMSFEs for the historical

standard deviation, EWMA, GARCH(1,1), and RLS models are reported in the first eight rows in

Table 1 for a forecast horizon of 40 trading days.8  For comparison, the annualized standard

deviation of the ex-post standard deviation, AS(s), which represents the RMSFE for a naive forecast

equal to mean volatility over the entire data period, is shown in the last row of Table 1.  istorical

standard deviations  over past periods of 10, 20, 40, 80, and 120 days, are reported in the first rows
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as STD(10), STD(20), ...,STD(120) respectively.  For each data series, the STD(n) with the lowest

RMSFE is shown in bold.  Note that in most markets, the RMSFE for a forecast horizon of 40 days

is minimized using the standard deviation over the last 120 days. 

 Comparing RMSFEs for (1) GARCH(1,1) model, (2) the lowest of the five RMSFEs for the

historical standard deviations, and (3) EWMA we find that the GARCH forecast has the smallest in-

sample RMSFE in eight of our nine markets, the single exception being the volatility of the 3-month

Eurodollar rate.  On average GARCH’s RMSFE is 5.8% lower than that of STD(120).  

Results for the RLS model are reported in row 8.  To facilitate comparison, the cell in each

column (market) with the lowest RMSFE among all the models in Table 1 is shaded.  As this

shading makes clear, in all nine markets, the RLS model has the lowest in-sample RMSFE among

the four (eight if we consider the STD models separately) models we examine.  This result holds for

all other forecasting horizons except the 10 day when GARCH is best in one market and holds  if

the mean absolute forecast error is used as the comparison metric instead of the root mean squared

forecast error.

B.  The Estimation Question.

Since the RLS model is structurally identical to the GARCH(1,1) model, the question arises

as to why it should consistently out-forecast the GARCH model on an in-sample basis.  The answer

is that the different estimation methods yield quite different parameter estimates.  Specifically, the

GARCH model chooses parameters which maximize the likelihood of observing the observed

sample of returns while the RLS chooses parameters which minimize the variance of the forecast

error.9 

How and how much the parameters estimates differ is shown in Table 2 where we report the

two models’ estimates of the parameters $, ", and 8 parameters of equation 7.  For GARCH, we
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first report the standard GARCH(1,1) parameter estimates, "0, "1, and $ of equation 4 and then the

implied parameters  ", 8, (and $) of equation 7.  The differences between the GARCH and RLS

estimates of ", 8, and $ are substantial and strikingly consistent.  In all nine markets, $RLS > $GARCH,

and 8RLS < 8GARCH.  This means that as compared with the GARCH model (also the EWMA model

as used by Riskmetrics), the restricted least squares model places considerably less weight on the

most recent observations and more weight on observations in the more distant past.   For instance, in

T-Bond market, as illustrated in Figure 1, the RLS model weights observations on days t-32 through

t less than GARCH and weighs observations on day t-33 and earlier more heavily.  Other implied

“cross-over” days are t-32 in the Eurodollar market, day t-39 in the S&P 500 index market, and day

t-18 in Dollar/Deutschmark market.  The implication is that the GARCH(1,1) procedure (also the

EWMA model with the Riskmetrics parameters) yields parameter estimates which over-weight

recent observations and underweight older observations.  In other words, in-sample forecast

accuracy is increased by reducing the weights GARCH attaches to the most recent observations and

increasing those attached to older observations.  

Our finding that the GARCH model puts too much weight on recent observations relative to

those in the past is  consistent with prior evidence showing that asset market volatility has a long

memory.  Consequently, the question arises whether the problem is solely with the GARCH(1,1)

parameter estimates or with the exponential model itself.  To test the appropriateness of the

exponential model, we estimate a more flexible model which nests exponential weights as a special

case.  As compared with switching to a completely different model, examining a more general

model which nests the exponential model, allows us to explore how and how much the weight

pattern that maximizes forecast accuracy differs from the exponentially declining weights model.   
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One distributed lag form meeting these requirements is an adaptation of Schmidt’s (1974)

model, which combines the Koyck and Almon lag forms.  Our Schmidt-type model of the variance

over a future period s is:

where I=2.10  Like the RLS model, this model, which we label GEN due to its flexible general form,

is estimated using non-linear least squares by regressing the ex-post variance on Zit’s defined for

various values of $.  Note that  so if  8i=0 for i>0,  the GEN model is identical to the

RLS model.  Consequently, we can test the appropriateness of the exponential weights assumption

by testing whether 8i=0 for all i>0.

As reported in Table 3, the null hypothesis that 81=82=0 (i.e. that the weights decline

exponentially) is clearly rejected at the .01 level in all nine markets.  Moreover, the pattern is

remarkably consistent across all nine markets in that 81<0 and 82>0 (and in that the 80 estimated for

the GEN model exceeds the RLS 8).  The implication is that an exponential lag structure (in which

the weights depreciate at the constant rate $), forces the weights to deprecate too slowly across the

most recent observations and too rapidly later.11  This is illustrated for two of our markets in Figures

2a and 2b  where the implied coefficients of rt-j
2 are plotted for j=0 to 200 according to both the RLS

and GEN models. 

 However, as illustrated in Figures 2a and 2b, the difference in the coefficient lag structure

between the RLS and GEN model estimates (that is between the more restrictive and flexible

regression forms), is less than that between the GARCH and RLS estimates of the same model.  In

all nine markets, the GARCH model’s parameter estimates put much more weight on the most

recent observations and less on older observations than either RLS or GEN.12 
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 In summary, we like others find evidence that the GARCH(1,1) model puts too much

weight on the most recent observations and not enough on observations in the more distant past. 

However, in contrast to previous studies which fault the exponential model, we find that much of

the fault lies with the estimation procedure.  We find that a regression estimation of the exponential

model results in parameters which put more weight on the more distant observations.  Also, it

should be noted that despite the considerable difference in the coefficient lag structure, the

differences in forecast accuracy are not that great.  Comparing GEN with GARCH, the improvement

in the RMSFE ranges from .4% (3M) to 9.2% (Eurodollars) and averages only 3.1%. 

IV. Out-of-Sample Forecasting Ability.

Next, we compare the five models’ out-of-sample forecasting ability.13  To generate out-of-

sample forecasts, each model is estimated using 1260 daily return observations - approximately five

years of daily data.  To limit the computational burden, the models are re-estimated every 40 days.14

The resulting root mean squared forecast errors for a 40 day forecasting horizon are reported in

Table 4 while results for other time horizons are reported in the Appendix.

When we compared forecasting ability in-sample in the previous section we observed that

GARCH consistently dominated the historical standard deviation, RLS consistently dominated

GARCH, and  GEN dominated RLS.  As shown in Table 4, these relationships no longer hold when

out-of-sample forecasts are compared.  The RLS and GARCH procedures forecast somewhat better

than the other three models in most markets but the RMSFE differences are generally small and

insignificant.  Between RLS and GARCH there is no clear winner.  In the four macro markets, RLS

has the lowest RMSFE in both the T-Bond and Deutschmark markets, GARCH’s RMSFE is lowest

in the S&P 500 market, while the RMSFE of the historical standard deviation based on observations

over the last 120 days is lowest in the Eurodollar market.   None of the RMSFE differences are
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significant at a .05 level.  In the five equity markets, GARCH has the lowest RMSFE in four (two of

which are significant at the .05 level) and RLS in one (Boeing).  In summary, on an out-of-sample

basis, no one procedure  clearly dominates although GARCH and RLS generally forecast better than

the STD, EWMA, and GEN models.  As shown in the Appendix A, the forecast horizon makes little

difference though there appears to be a tendency for STD to forecast better and for RLS to do less

well as the horizon increases.

The GARCH(1,1) model was not always well-behaved in our estimations.  In six of our nine

markets,  (the lower bound) in some sub-samples.  In other words, replacing only 40 out of

1260 observations would occasionally cause  to suddenly drop from .8 or .9 to zero and replacing

a different 40 observations would cause  to return to .8 or .9.  In most markets, this only happened

occasionally, e.g., in 2 out of 190 sub-samples in the T-Bond market and 2 out of 126 in the

Eurodollar market, but there was at least one such occurrence in six markets and for 3M there were

16 (out of 173).  In the individual equity estimations, there were also numerous times when

implying that only the most recent observations have any information content.  In contrast, the RLS

parameter estimates were much more stable across samples.  In only one sub-sample in one market

(Eurodollar) was the estimated $ at our lower bound of .505.

While the GEN model consistently dominated the others in terms of in-sample forecast

accuracy, this is certainly not the case when out-of-sample forecasting ability is compared.   In all

nine markets, both RLS and GARCH have lower out-of-sample RMSFEs.   The inability of the

GEN model to forecast very well out-of-sample illustrates the cost of added complexity

underscoring the argument of Dimson and Marsh (1990).  As econometrics texts commonly point

out, if the true model is  but one instead estimates ,

will be a biased estimator of $1 (unless Z1 and Z2 are orthogonal) but will have a smaller variance

than .   Since the variance of the forecast error is a function of both, if Z2 is a relatively minor
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determinant of Y, better forecasts may often be obtained with the simpler, though biased, model. .

While the GEN model corrects the tendency for the RLS model to under-weigh recent and older

observations relative to those in the middle, by adding two additional parameters, more estimation

error is introduced leading  to a deterioration in out-of-sample forecasting ability.

In summary, we find that the exponential model using parameters estimated using either the

GARCH or regression procedures (RLS) forecasts better than either the historical standard

deviation, the exponentially weighted moving average model, or a more general model that nests the

exponential model.  The RLS estimation of the exponential model results in parameter estimates

which place less weight on the most recent observations and more on older observations than the

GARCH estimation procedure and also results in more stable parameter estimates.  Nonetheless, the

forecasting record of the RLS and GARCH(1,1) models is roughly the same.  A more flexible model

that nests the exponential model forecasts somewhat better than the RLS and GARCH(1,1) models

on an in-sample basis indicating the exponential form may not be the most appropriate.  However,

since this model involves more parameters, estimation error is increased and it forecasts consistently

worse out-of-sample.

V.  The Impact of Large Return Surprises.

To this point, all the models which we have considered belong to what we have termed LSD 

models, that is, volatility forecasts based on linear combinations of past squared return deviations. 

The fact that all are based on squared return deviations means that the forecasts are quite sensitive to

big outliers.  An obvious question, but one which to our knowledge has not been explored

heretofore, is whether better forecasts can be obtained using models which are less sensitive to a

single highly volatile day, such as models based on absolute return deviations.
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A.  A Least Squares Exponential Model Based on Absolute Return Deviations.

To explore whether models based on absolute return observations forecast better than

equivalent forms based on squared return deviations, we first develop an exponential model similar

to that of the RLS and GARCH models but specified in terms of absolute, rather than squared, past

return observations.  Unlike the models based on squared return deviations those based on absolute

returns  require a return distribution assumption.  If log returns Rt=ln(P/Pt-1) are normally distributed

with mean :, then where rt = Rt-, and  where 3Wj =0. 

Based on this we define a regression model with exponentially declining weights analogous to RLS 

but defined in terms of absolute, rather that squared, return deviations:

where AS(s)t is the realized standard deviation of returns over the s day period following day t.  We

refer to this as the absolute restricted least squares model or A-RLS  Note the similarities and

differences  between equations 12 and 8.  In estimating the RLS model of equation 8, we regressed

the ex post variance on Zt’s defined using squared return innovations.  In 12, we regress the ex post

standard deviation on Wt’s defined in terms of absolute return innovations. In both the weights

decline exponentially.   Again, we first generate the series W($)t using values of $ from .500

through 1.000 in increments of .005, then regress   on W($)t using OLS, repeat the regression

for all values of $, and choose the values of  $, ", and 8 for the regression resulting in the lowest

residual sum of squares.  The resulting parameter estimates for each of the nine markets are reported

in Table 6. Once the parameters are determined, we then generate the forecasts:
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 where J=200.  Out-of-sample RMSFEs for this forecasting model are reported in Table 5 where the

RMSFEs for the RLS model are repeated for comparison.  The lower of the two is in boldface.  In

eight of the nine markets , A-RLS’s RMSFE  is lower than that of the RLS model; Exxon where the

two RMSFEs are virtually identical is the exception.  As reported in Panel B, in five of the nine

markets, the null that RLS and A-RLS yield equally accurate out-of-sample forecasts is rejected at

the .05 level.  A-RLS’s out-of-sample RMSFE averages about 6.7% below RLS’s across our nine

markets - a fairly substantial improvement.  As shown in the Appendix, A-RLS’s dominance over

RLS holds at all forecasting horizons.  

B.   AGARCH and EGARCH Models.

Next attention is turned to two models in the GARCH family: AGARCH since our analysis

to this point indicates that models based on absolute return deviations out-perform similar models

based on squared return deviations and EGARCH, which we consider because it is second to the

GARCH(1,1) model in popularity.  Analogous to the GARCH(1,1) model’s assumption in terms of

the variance, the AGARCH model assumes the standard deviation, S, of log-normally distributed

returns evolves following the process:

Successive backward substitution yields the expression, , while

forward substitution yields, .  The AGARCH forecast of

the standard deviation of returns over the period from t+1 to t+s is then:
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(16)

(17)

If daily returns are independent, the variance of returns over the s day period is the sum of the

variance of returns each day.  Hence, while the GARCH forecast could be expressed as a linear

function of past squared return innovations, the expression for the AGARCH forecast in equation 15

cannot be rewritten as a linear function of past absolute return innovations.  This also means that

while the RLS and GARCH forecasts were structurally identical, A-RLS and AGARCH are not.

The final model which we consider is the EGARCH model of Nelson (1991) which assumes

that the variance of the log-return, vt, follows the process:

The most well-known property of the EGARCH model is that (through the last right-hand side term)

it, unlike GARCH, allows equal positive and negative shocks to have different impacts on the

conditional variance.  Equally important for our purposes is the fact that the conditional variance is

modeled in terms of absolute, instead of squared, return innovations.  However, since the left land

side variable is the log of the conditional variance, EGARCH’s properties are quite different from

AGARCH’s.   While extreme observations have less impact on the volatility forecast in AGARCH

than in GARCH, EGARCH  tends to place more weight on extreme observations.

Note that since the step-head values of both of the last two

terms in equation 16 are zero.  So for k>1, 

To estimate volatility over the next s days, we first estimate equation 16 using maximum likelihood. 

Then, we forecast the variance every day from day t+1 through day t+s using equations 16 and 17

and average the vt+k’s for all s days to obtain the EGARCH forecast.  In the S&P 500 and individual

equity estimations , confirming the common finding that in equity markets negative shocks tend
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to increase the conditional variance more than equivalent positive shocks but (while significant) its

explanatory value is low.  The estimated theta is also negative in the DMark market but positive in

the two interest rate markets.  

As shown in Table 5, where the lowest of the three GARCH model RMSFE’s is in boldface, 

in terms of out-of-sample forecasting accuracy, it is difficult to choose between GARCH and

EGARCH but both tend to dominate AGARCH.  EGARCH  has the lowest RMSFE in five markets

and GARCH(1,1) in four.15  Pairwise, GARCH dominates AGARCH in every market and EGARCH

dominates AGARCH in all save International Paper.  While we found that the regression model

based on absolute return deviations forecast better than equivalent model based on squared

deviations, that clearly does not hold true for GARCH type models.  Interestingly, the results in

Appendix A indicate that GARCH forecasts somewhat better at the longer horizons and EGARCH

at the shorter horizons.16  

As with GARCH, the EGARCH  and AGARCH estimations were not always well-behaved

in the 1260 observation sub-samples. For the EGARCH model, in seven of the nine markets, in

some sub-samples and in six markets in some sub-samples.  In nine sub-samples in the T-Bond

market, implying that higher than normal volatility tends to be followed by lower than normal

volatility.  Similar problems were observed with AGARCH.

C.  And the Winner Is ...

In each column in Table 5, we shade the cell with the lowest RMSFE for that market among

all the forecasting models which we consider.  The results are fairly dramatic.  In six of the nine

markets, the RMSFE of the A-RLS model is the lowest of the ten forecasting models.  GARCH’s

RMSFE is lowest in two equity markets and STD(120) in one.  Across the nine markets, A-RLS’s

RMSFE averages about 3.8% below GARCH’s and 3.8% below EGARCH’s.  It beats GARCH in
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seven of nine markets and in four of those the null that the A-RLS and GARCH out-of-sample

forecasts are equally accurate is rejected at the .05 level.  A-RLS’s out-of-sample RMSFE is lower

than EGARCH’s in eight of the nine markets and in four the null of equal accuracy is rejected at the

.05 level.  As reported in the Appendix, when forecast errors are measured in terms of mean

absolute error, A-RLS’s forecasting dominance is even more complete.  Interestingly, as shown in

the Appendix, at the shorter horizons of 10 and 20 days, A-RLS consistently dominates the other

procedures in terms of out-of-sample RMSFE but as the length of the forecast horizon expands, this

dominance declines and at the longest horizons no one procedure is clearly best.

D.  Weights reconsidered.

Estimated parameters for the RLS and A-RLS models are reported in Tables 2 and 6

respectively.  In every market  8A-RLS > 8RLS and $A_RLS < $RLS. In other words, the A-RLS model

consistently assigns greater weight to the most recent observations and less weight to older

observations in forming its forecasts than the RLS model.  Apparently, once the impact of outliers

on the volatility forecast is reduced by switching from squared to absolute return deviations, the

model no longer needs to spread the weights over a large number of past observations.  It should be

noted however that even though A-RLS attaches more weight to the most recent observations and

less to older observations than RLS, it still attaches less weight to the most recent observations and

more to the older than GARCH(1,1).

Given the apparent forecasting superiority of the A-RLS model over the other models and

the difference in its parameters versus RLS, the question again arises whether the exponentially

declining weight structure in A-RLS is appropriate.  To explore this issue, we again estimate a more

general model which nests the A-RLS model as a special case.  To be specific, we define the

terms  for i=0,1,and 2.   The ex post standard deviation, AS(s)t is then
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regressed on W($)0t, W($)1t, and W($)2t.  If the coefficients of  W($)1t, and W($)2t (again designated

as 81 and 82) equal zero, the model is equivalent to A-RLS.    Parameter estimates for both the A-

RLS and A-GEN models are reported in Table 6.  The parameter pattern for A-GEN is consistent

across all nine markets and identical to the pattern observed in Table 3 for the estimators based on

squared return deviations in that .  In eight markets  exceeds the 8 estimated

for the A-RLS model.   The null that 81=82=0 is rejected at the .01 level in all nine markets.  This

coefficient pattern implies that the geometric lag structure embodied in the A-RLS model tends to

under-weight the youngest and oldest observations and over-weight those in-between.  However the

difference in the in-sample RMSFEs between A-RLS and A-GEN is small and the null that the two

models are equally accurate cannot be rejected in any market.  On the other hand, the out-of-sample

RMSFEs for the A-GEN model consistently exceed those of the A-RLS model sometimes 

substantially.  In summary, for both forecasting models based on squared return deviations and those

based on absolute return deviations, our evidence indicates that an exponentially declining weight

structure tends to under-weight the youngest and oldest observations and over-weight those in-

between.  However, by adding parameters, more flexible lag forms introduce additional estimation

error which severely impacts their out-of-sample forecasting ability.

VI.  Conclusions.

We have compared the forecasting ability of several volatility models - the historical

standard deviation, Riskmetric’s exponentially weighted moving average, GARCH(1,1), AGARCH,

EGARCH, and two regression models developed here -  focusing on four issues: (1) the proper

weighting of older versus recent observations, (2) the relevance of the parameter estimation

procedure, (3) the tradeoff between model flexibility and estimation error, and (4) the proper

weighting of large return surprises.  As regards the first issue, our evidence indicates that the
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GARCH(1,1) model puts too much weight on the most recent observations and not enough on older

observations.  However we find that out-of-sample forecast accuracy is relatively insensitive to this

parameter choice.  As regards the second, we find that different parameter estimation procedures

result in quite different parameter estimates for the same model.  In particular, we find that

regression estimates of the exponential model differ substantially and consistently from those

estimated using the GARCH procedure.  The regression parameter estimates put more weight on

older observations and are also more stable.  Again however out-of-sample forecast accuracy

appears relatively insensitive to the parameter choice. 

Turning to the third issue, our evidence underscores the cost of added flexibility in terms of

forecast accuracy.   While more complex and flexible models forecast better than simple models on

an in-sample basis, by adding parameters they increase the scope for estimation error and forecast

consistently worse out-of-sample.  Perhaps our strongest results relate to the fourth issue. 

Apparently because extreme observations have less impact on the forecasts when absolute return

deviations are used, we find that an exponential model based on absolute return deviations forecasts

considerably better than one based on squared return deviations.

While no one model dominates at all horizons in all nine markets, one certainly stands out

from the others.  In most markets and at most horizons, the forecasting model with the lowest root

mean squared forecast error or mean absolute forecast error among the models we consider is the 

least squares regression model developed here (A-RLS) in which the forecast volatility for the

coming period is a weighted average of recent absolute return deviations with exponentially

declining weights.   GARCH or EGARCH often come in second but they are dominated by the

ARLS model in most markets.
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Table 1 -  In-Sample Root Mean Squared Forecast Errors of LSD Class Volatility Models

The procedures listed in column 1 are used to forecast the annualized standard deviation of daily returns over the next 40 trading days. Root mean
squared forecast errors for these forecasts are reported in Panel A.  STD(n) denotes the historical standard deviation over the last n days.  EWMA
denotes an exponentially weighted moving average model using the Riskmetrics depreciation parameter. GARCH denotes the forecast derived from a
GARCH(1,1) model.  RLS is structurally identical to the GARCH model but the parameters are estimated using OLS.  The lowest RMSFE among the
STD(n)’s is shown in bold face, the lowest among the STD(n), GARCH, EWMA and RLS models is shaded.  For comparison, we also report the mean
and standard deviation of the ex post standard deviation, AS at the bottom of the table.

Forecasting
Model

Markets

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

Panel A - Root Mean Squared Forecast Errors

STD(10) 0.06814 0.04719 0.11156 0.04841 0.12488 0.09028 0.10561 0.11283 0.09293

STD(20) 0.06467 0.04225 0.09697 0.04476 0.10564 0.08151 0.09250 0.10067 0.08224

STD(40) 0.06256 0.03977 0.08688 0.04242 0.09172 0.07555 0.08261 0.09405 0.07580

STD(80) 0.06337 0.03929 0.08465 0.03988 0.08774 0.07497 0.08039 0.09635 0.07563

STD(120) 0.06235 0.03944 0.08254 0.03848 0.08613 0.07326 0.07951 0.09693 0.07574

EWMA 0.06123 0.03870 0.08658 0.04105 0.09315 0.07536 0.08350 0.09273 0.07559

GARCH 0.05969 0.03771 0.08554 0.03754 0.08103 0.06659 0.07287 0.08723 0.06708

RLS 0.05802 0.03737 0.07859 0.03581 0.08078 0.06578 0.07191 0.08558 0.06683

AS
Mean 0.12324 0.10987 0.24595 0.09790 0.31747 0.18604 0.25034 0.28340 0.20613

STD 0.06353 0.05369 0.12714 0.03946 0.10314 0.07229 0.08135 0.11674 0.07630

  OBS 8111 8523 5965 6322 7859 7859 7859 6849 7859



Table 2 -  Comparison of Parameters for the GARCH(1,1) and Restricted Least Squares Models

For both the restricted least squares (RLS) and GARCH models, we report parameter estimates for the forecasting model  
FVt = " + 83j $

j r2
t-j where FVt is the forecast of the variance over the period from day t+1 through t+40 and J=200.  The

RLS parameters are obtained by regressing the ex post variance over 40-day periods on the lagged r2's using non-linear least
squares (where the possible $ are in increments of .005).  The GARCH parameters are obtained by first estimating the
GARCH(1,1) model vt+1 = "0 + "1rt

2 + $vt  (whose parameter estimates are also reported) where vt is the conditional
variance on day t and then solving for the implied parameters " and 8 in the 40-day forecasting model as outlined in
equations 5, 6, and 7 in the text. 

Market
GARCH(1,1) Restricted Least Squares

"0 "1 $ " 8 $ " 8

S&P 500 5.110e-7 0.07702 0.91867 1.522e-5 0.07089 0.970 5.322e-5 0.00910

10 year T-bond 8.889e-8 0.05534 0.94334 3.234e-6 0.05392 0.970 1.683e-5 0.02162

Eurodollar 9.660e-7 0.06195 0.93655 3.327e-5 0.06017 0.990 3.173e-5 0.01008

Dollar/DMark 1.190e-6 0.10861 0.86820 2.356e-5 0.07128 0.985 2.186e-5 0.00799

Boeing Co.        1.985e-6 0.02551 0.96988 9.750e-5 0.02334 0.980 1.355e-4 0.01410

Exxon Corp.     5.115e-6 0.08093 0.88487 9.181e-5 0.04445 0.970 1.048e-4 0.01015

Int’l Paper Co.  3.870e-6 0.04050 0.94577 1.191e-4 0.03133 0.970 1.563e-4 0.01299

McDonald’s 2.261e-6 0.04652 0.94842 8.118e-5 0.04221 0.965 1.135e-4 0.02404

3M  4.190e-6 0.05122 0.92700 1.017e-4 0.03443 0.970 1.079e-4 0.01313



Table 3 -  Parameter Estimates for the GEN Model

Parameter estimates for the model AV(40)t =" +80 Z0t +81 Z1t + 82 Z2t +gt are reported where Zit =
3 $j ji rt-j

2 for j = 0, 1, ...... , 200, rt is the return on day t expressed in deviation (from its mean)
form, and AV(40)t is the ex post variance of returns over the period from t+1 through t+40.  The
parameters are estimated using non-linear least squares over the entire data period.  The F statistic
for a test of the null hypothesis that 81=82=0 is also reported.

Market
Parameter Estimates

F   
(81=82=0) 

RMSFE
$ " 80 81 82

S&P 500 0.975 4.975e-5 0.01097 -0.00024 2.525e-6 11.898 .05758

10 year T-bond 0.980 1.289e-5 0.02633 -0.00069 5.525e-6 165.45 .03634

Eurodollar           0.970 3.049e-5 0.02444 -0.00099 1.665e-5 95.268 .07764

Dollar-DMark 0.965 2.072e-5 0.02014 -0.00106 1.836e-5 76.266 .03534

Boeing Co.          0.970 1.277e-4 0.01711 -0.00021 5.501e-6 14.016 .08075

Exxon Corp.        0.880 1.107e-4 0.02223 -0.00432 3.962e-4 23.165 .06585

Int’l Paper Co.   0.965 1.482e-4 0.01638 -0.00034 5.986e-6 12.343 .07188

McDonald’s Co. 0.980 1.000e-4 0.02558 -0.00050 3.068e-6 22.391 .08520

3M  0.900 1.141e-4 0.01898 -0.00179 2.199e-4 12.741 .06681



Table 4 -  Out-of-Sample Root Mean Squared Forecast Errors of LSD Class Volatility Models.

The procedures listed in column 1 are used to forecast the annualized standard deviation of daily returns over the next 40 trading days.  Root mean
squared forecast errors for these forecasts are reported in each cell.  The number of periods over which the RMSFE is calculated is reported in the last
row.  STD(n) denotes the historical standard deviation over the last n days.  GARCH denotes the forecast derived from a GARCH(1,1) model. RLS is
structurally identical to the GARCH model but the parameters are estimated using OLS.  GEN is a more flexible regression model defined in
equations 11 in the text.  Parameters of all models except STD(n) and EWMA are estimated using data over the past 1260 market days and the models
are re-estimated every forty days.  The lowest RMSFE among the STD(n)’s is shown in bold face, the lowest among the STD(n), EWMA, GARCH,
RLS, and GEN models is shaded. For comparison, we also report the mean and standard deviation of the ex post standard deviation, AS. Under the
null that two forecasts are equally accurate, the Diebold-Mariano S1 statistics in Panel B are normally distributed (0,1) in large samples.

Forecasting
Model

Markets

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

Panel A - Roor Mean Squared Forecast Errors

STD(10) 0.07221 0.04971 0.10520 0.04299 0.12918 0.09556 0.10733 0.11081 0.09385

STD(20) 0.06852 0.04444 0.09368 0.03948 0.10959 0.08660 0.09438 0.10046 0.08384

STD(40) 0.06621 0.04182 0.08617 0.03750 0.09459 0.08031 0.08519 0.09652 0.07723

STD(80) 0.06721 0.04151 0.08490 0.03677 0.09061 0.07961 0.08313 0.09897 0.07716

STD(120) 0.06614 0.04167 0.08398 0.03593 0.08901 0.07785 0.08272 0.09811 0.07725

EWMA 0.06492 0.04072 0.08447 0.03618 0.09638 0.08011 0.08563 0.09397 0.07700

GARCH 0.06128 0.04093 0.08908 0.03420 0.08914 0.07346 0.07916 0.08791 0.07459

RLS 0.06499 0.04056 0.08926 0.03361 0.08706 0.07786 0.08895 0.09414 0.07800

GEN 0.07428 0.04390 0.09317 0.03461 0.08996 0.07928 0.10300 0.10286 0.08174

Panel B - Diebold-Marino Tests for Differences in Forecast Accuracy

RLS vs. STD(120) 0.207 0.607 -0.922 1.541 0.540 -0.001 -1.355 0.635 -0.155

GARCH vs. STD(120) 0.693 0.368 -0.891 0.931 -0.035 0.608 0.622 1.501 0.481

RLS vs. GARCH -1.793 0.276 -0.057 0.518 1.413 -2.266 -1.776 -2.440 -1.946

AS
Mean 0.13133 0.11862 0.21370 0.10238 0.32072 0.19376 0.25505 0.26650 0.20611

STD 0.06469 0.05134 0.12045 0.03503 0.10412 0.07456 0.08397 0.11606 0.07954

  OBS 6812 7224 4666 5023 6560 6560 6560 5550 6560



Table 5 -  Out-of-Sample Root Mean Squared Forecast Errors for non-LSD Models.

The procedures listed in column 1 are used to forecast the annualized standard deviation of  daily returns over the next 40 trading days and the
resulting root mean squared errors are reported in Panel A.  A-RLS represents the forecast from the restricted least squares model based on absolute
deviations as defined in equations 12 and 13 in the text. Parameters of the A-RLS, AGARCH, and EGARCH  models  are calculated using daily data
over the last 1260 days and the model is re-estimated every 40 days.   Within each group, the lowest RMSFE is shown in bold face.  The lowest
RMSFE among the STDk(n), EWMA, GARCH, AGARCH, EGARCH, A-RLS and RLS models is shaded. Under the null that two forecasts are
equally accurate, the Diebold-Mariano S1 statistics in Panel B are normally distributed (0,1) in large samples.

Forecasting
Model

Markets

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

Panel A - Root Mean Squared Forecast Errors

STD(20) 0.06852 0.04444 0.09368 0.03948 0.10959 0.08660 0.09438 0.10046 0.08384

STD(40) 0.06621 0.04182 0.08617 0.03750 0.09459 0.08031 0.08519 0.09652 0.07723

STD(80) 0.06721 0.04151 0.08490 0.03677 0.09061 0.07961 0.08313 0.09897 0.07716

STD(120) 0.06614 0.04167 0.08398 0.03593 0.08901 0.07785 0.08272 0.09811 0.07725

EWMA 0.06492 0.04072 0.08447 0.03618 0.09638 0.08011 0.08563 0.09397 0.07700

A-RLS 0.05634 0.03797 0.08625 0.03165 0.08473 0.07817 0.07781 0.08922 0.06946

RLS 0.06499 0.04056 0.08926 0.03361 0.08706 0.07786 0.08895 0.09414 0.07800

AGARCH 0.06167 0.04195 0.09760 0.03407 0.08978 0.07538 0.08304 0.09083 0.07593

EGARCH 0.05978 0.03997 0.09346 0.03265 0.08770 0.07378 0.08376 0.09045 0.07273

GARCH 0.06128 0.04093 0.08908 0.03420 0.08914 0.07346 0.07916 0.08791 0.07459

Panel B - Diebold-Marino Tests for Differences in Forecast Accuracy

A-RLS vs RLS 3.094 3.030 1.188 2.737 1.287 -0.074 1.860 2.584 2.591

GARCH vs. EGARCH -1.091 -0.864 1.919 -1.435 -0.454 0.592 1.997 0.618 NA

A-RLS vs. GARCH 1.546 2.743 0.823 2.342 2.307 -0.861 0.570 -0.468 2.776

  OBS 6812 7224 4666 5023 6560 6560 6560 5550 6560



Table 6 - Parameter Estimates for A-RLS and A-GEN Models

We report parameter estimates for the equations AS(40)t =" +8 W0t +,t and AS(40)t ="O +80 W0t +81 W1t + 82 W2t +gt where 
Wit = 3 $j ji |rt-j| for j=1,...200, rt is the daily return on day t in deviation form, and AS(40)t is the ex post standard deviation of returns
over the period from t+1 through t+40.   The models are estimated using non-linear least squares over the data periods reported in Table
1.  The F statistic for a test of the null hypothesis that 81=82=0 is also reported.  Values of $ from .5 to 1.0 in increments of .005 are
considered.

Market

A-RLS model
AS(40)t =" +8 W0t

A-GEN model
AS(40)t ="O +80 W0t +81 W1t + 82 W2t 

$ " 8 $ " 80 81 82 F

S&P 500 0.940 0.00270 0.05086 0.970 0.00189 0.05218 -0.00192 1.926e-5 92.974

10 year T-bond 0.965 0.00161 0.03586 0.975 0.00134 0.04381 -0.00120 1.045e-5 127.77

Eurodollar           0.980 0.00400 0.02098 0.970 0.00380 0.03624 -0.00124 1.725e-5 89.112

Dollar/DMark     0.955 0.00297 0.03110 0.955 0.00259 0.04807 -0.00268 4.749e-5 84.781

Boeing Co.          0.975 0.00503 0.02465 0.975 0.00442 0.02904 -0.00046 5.170e-6 29.114

Exxon Corp.        0.960 0.00513 0.02915 0.970 0.00442 0.03492 -0.00103 1.100e-5 36.470

Int’l Paper Co.   0.970 0.00534 0.02601 0.940 0.00527 0.03242 -0.00081 6.410e-5   7.357

McDonald’s Co. 0.955 0.00447 0.04338 0.970 0.00372 0.05015 -0.00143 1.297e-5 45.799

3M  0.955 0.00485 0.03693 0.890 0.00499 0.04440 -0.00203 4.369e-4 7.102



Appendix A.1
Out-of-Sample Root Mean Squared Forecast Errors For a 10 Trading Day Forecasting Horizon

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

STD(10) 0.07359 0.05452 0.11359 0.04523 0.15135 0.10337 0.11853 0.11968 0.10441

STD(20) 0.07184 0.05068 0.10815 0.04402 0.13811 0.09730 0.11054 0.11171 0.09732

STD(40) 0.07023 0.04902 0.10413 0.04305 0.12933 0.09257 0.10578 0.10846 0.09258

STD(80) 0.07124 0.05016 0.10565 0.04403 0.12549 0.09087 0.10390 0.11229 0.09219

STD(120) 0.07204 0.05107 0.10702 0.04418 0.12517 0.09105 0.10457 0.11593 0.09279

EWMA 0.06775 0.04772 0.10063 0.04114 0.12849 0.09073 0.10322 0.10531 0.09118

GARCH 0.06558 0.04841 0.10492 0.04046 0.12518 0.08622 0.10082 0.10401 0.08859

RLS 0.06877 0.04871 0.10857 0.04024 0.12466 0.09036 0.10209 0.10582 0.09113

A-RLS 0.06207 0.04625 0.10198 0.03850 0.11915 0.08663 0.09795 0.10262 0.08531

AGARCH 0.06406 0.04806 0.10575 0.03972 0.12333 0.08775 0.10027 0.10513 0.08846

EGARCH 0.06502 0.04752 0.10596 0.03906 0.12281 0.08704 0.10170 0.10419 0.08829

  OBS 6732 7144 4586 4943 6480 6480 6480 5470 6480

Note: The lowest RMSFE among the five STD(n)’s is shown in bold.  In each column,  the cell with the lowest RMSFE is
shaded.



Appendix A.2
Out-of-Sample Root Mean Squared Forecast Errors For a 20 Trading Day Forecasting Horizon

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

STD(10) 0.07276 0.05094 0.10849 0.04394 0.13804 0.09792 0.11106 0.11256 0.09828

STD(20) 0.06948 0.04585 0.09935 0.04133 0.12160 0.08964 0.10035 0.10187 0.08913

STD(40) 0.06744 0.04404 0.09288 0.03957 0.10987 0.08472 0.09328 0.09910 0.08326

STD(80) 0.06864 0.04459 0.09381 0.03999 0.10561 0.08354 0.09114 0.10244 0.08266

STD(120) 0.06855 0.04526 0.09403 0.03977 0.10455 0.08293 0.09120 0.10524 0.08301

EWMA 0.06571 0.04268 0.09072 0.03813 0.10993 0.08351 0.09230 0.09586 0.08251

GARCH 0.06280 0.04335 0.09521 0.03698 0.10445 0.07906 0.08792 0.09245 0.07954

RLS 0.06697 0.04328 0.09815 0.03652 0.10413 0.08221 0.09324 0.09619 0.08270

A-RLS 0.05831 0.04079 0.09398 0.03482 0.08324 0.08048 0.08516 0.09212 0.07549

AGARCH 0.06146 0.04322 0.09901 0.03590 0.10327 0.08059 0.08834 0.09391 0.07958

EGARCH 0.06181 0.04221 0.09777 0.03511 0.10218 0.07958 0.08977 0.09386 0.07853

  OBS 6732 7144 4586 4943 6480 6480 6480 5470 6480

Note: The lowest RMSFE among the five STD(n)’s is shown in bold. In each column,  the cell with the lowest RMSFE is shaded.



Appendix A.3
Out-of-Sample Root Mean Squared Forecast Errors For a 80 Trading Day Forecasting Horizon

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

STD(10) 0.07525 0.05072 0.10730 0.04443 0.12594 0.09609 0.10552 0.11564 0.09449

STD(20) 0.07173 0.04503 0.09494 0.04036 0.10566 0.08765 0.09275 0.10482 0.08459

STD(40) 0.06906 0.04190 0.08575 0.03720 0.09091 0.08208 0.08393 0.10039 0.07838

STD(80) 0.06700 0.04031 0.08127 0.03476 0.08404 0.07838 0.07995 0.09746 0.07606

STD(120) 0.06561 0.03965 0.07855 0.03302 0.08231 0.07638 0.07941 0.09481 0.07616

EWMA 0.06791 0.04116 0.08488 0.03649 0.09205 0.08143 0.08405 0.09801 0.07787

GARCH 0.06170 0.04086 0.08769 0.03080 0.08132 0.06988 0.07665 0.08810 0.07538

RLS 0.06914 0.03971 0.08653 0.03063 0.07756 0.07839 0.08870 0.10269 0.07793

A-RLS 0.05852 0.03738 0.08424 0.03001 0.07767 0.07443 0.07393 0.09433 0.06905

AGARCH 0.06716 0.04521 0.10247 0.03106 0.08548 0.07256 0.09009 0.09483 0.08114

EGARCH 0.05953 0.04049 0.09372 0.02903 0.08186 0.07006 0.08830 0.09080 0.07203

  OBS 6732 7144 4586 4943 6480 6480 6480 5470 6480

Note: The lowest RMSFE among the five STD(n)’s is shown in bold. In each column,  the cell with the lowest RMSFE is shaded.



Appendix A.4
Out-of-Sample Root Mean Squared Forecast Errors For a 120 Trading Day Forecasting Horizon

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

STD(10) 0.07569 0.05139 0.10721 0.04454 0.12553 0.09642 0.10617 0.11833 0.09561

STD(20) 0.07140 0.04556 0.09425 0.04007 0.10443 0.08748 0.09274 0.10680 0.08557

STD(40) 0.06813 0.04203 0.08416 0.03632 0.08913 0.08113 0.08364 0.09951 0.07898

STD(80) 0.06608 0.03971 0.07820 0.03308 0.08225 0.07735 0.07968 0.09505 0.07671

STD(120) 0.06476 0.03852 0.07554 0.03106 0.07990 0.07576 0.07937 0.09272 0.07651

EWMA 0.06760 0.04156 0.08388 0.03592 0.09068 0.08118 0.08418 0.09881 0.07893

GARCH 0.06083 0.04071 0.08834 0.02897 0.07774 0.06744 0.07646 0.08856 0.07677

RLS 0.07076 0.03952 0.08502 0.02906 0.07541 0.07381 0.08418 0.10244 0.07800

A-RLS 0.05809 0.03795 0.08397 0.02801 0.07578 0.07078 0.07335 0.09210 0.06952

AGARCH 0.07328 0.04884 0.10682 0.03032 0.08522 0.07057 0.10404 0.09952 0.08766

EGARCH 0.05840 0.04087 0.09485 0.02672 0.08058 0.06741 0.09925 0.09033 0.07238

  OBS 6732 7144 4586 4943 6480 6480 6480 5470 6480

Note: The lowest RMSFE among the five STD(n)’s is shown in bold.  In each column,  the cell with the lowest RMSFE is
shaded.



Appendix A.5  
Out-of-sample Mean Absolute Forecast Errors For a 40 Trading Day Forecasting Horizon

S&P 500
10-year 
T-Bond

90-day
Eurodollar

Dollar/
DMark

Boeing Exxon Int’l Paper McDonalds 3M

STD(10) 0.03700 0.03642 0.07521 0.03231 0.09456 0.05684 0.07311 0.07366 0.06085

STD(20) 0.03445 0.03276 0.06800 0.02967 0.07945 0.04957 0.06241 0.06432 0.05292

STD(40) 0.03415 0.03125 0.06387 0.02904 0.06975 0.04434 0.05476 0.06016 0.04910

STD(80) 0.03522 0.03195 0.06321 0.02912 0.06863 0.04285 0.05271 0.06120 0.04755

STD(120) 0.03556 0.03196 0.06331 0.02856 0.06821 0.04196 0.05446 0.06253 0.04778

EWMA 0.03278 0.03030 0.06238 0.02743 0.07044 0.04466 0.05520 0.05931 0.04791

GARCH 0.03366 0.03366 0.03155 0.07149 0.02705 0.07214 0.04206 0.05177 0.059020.0

RLS 0.03764 0.03146 0.07020 0.02710 0.06955 0.04641 0.05813 0.06502 0.05153

A-RLS 0.02980 0.02868 0.06586 0.02476 0.06696 0.04237 0.05039 0.05782 0.04284

AGARCH 0.03601 0.03366 0.08112 0.02734 0.07395 0.04439 0.05587 0.06288 0.05100

EGARCH 0.03283 0.03148 0.07637 0.02630 0.07101 0.04242 0.05475 0.06074 0.04676

  OBS 6812 7224 4666 5023 6560 6560 6560 5550 6560

Note: The lowest MAFE among the five STD(n)’s is shown in bold.  In each column, the cell with the lowest MAFE is shaded.



1.   For an excellent review of existing studies in this area see Poon and Granger (2003).  Notable examples include Akgiray (1989),
Pagan and Schwert (1990), Tse (1991), Jorion (1995), West and Cho (1995), Brailsford and Faff (1996), Figlewski (1997), Brooks
(1998), Loudon et al (2000), Lopez (2001), Hansen and Lunde (2001), and Anderson et al (2003).

2.  In their excellent survey Poon and Granger (2003) survey 93 studies with out-of-sample comparisons but about half of these
compare time-series and implied volatility forecasts.  Of the 39 comparing GARCH(1,1) with the historical variance, 17 find that
GARCH forecasts better while  22 find in favor of the historical variance. 

3.  In a series of papers Andersen and Bollerslev and others (e.g., Andersen et al, 2003) have shown that (at least for fairly short
forecast horizons such as a day or week or two) models based on high frequency intra-day data forecast better than those based on
daily data but these high frequency models have not yet gained acceptance in practice. 

4.  In the case of dividend paying stocks, Pt is adjusted for any dividends.

5.  Often : is replaced by the sample mean and accordingly the r2 are divided by n-1, rather than n in equation 1.  The latter procedure
implicitly assumes that the expected return over the coming period equals the mean return in the n-day period used to estimate
VAR(n).  Given the low auto-correlation in returns there is no justification for this assumption and Figlewski (1997) shows that better
forecasts are obtained by setting :=0.  In our calculations, we set : equal to the average daily return over the entire data period.

6.  For instance, when Lopez (2001) estimates an AR(10), in every market the largest coefficient is for a lag of 6 days or longer.

7.   These periods overlap.  In other words, we calculate AS(s)m and FSTD(s)m for the s-day period beginning on day m, move up one
day to day m+1  and recalculate. 

8.  Results of other forecast horizons are quite similar and are available from the authors on request.

9.  We follow an iterative estimation procedure to estimate the parameters in equation 9.  Specifically, for values of $ from .500 to
1.000 in increments of .005, we form the variables Z($)t as defined in equation 8, then regress the realized or ex post variance over the
period from t through t+40, AV(40)t, on Z($)t using OLS.  This regression is repeated for each value of $ from .500 to 1.000.   The
regression with the lowest error-sum-of-squares yields our estimates of $, ", and 8.  Using these parameter estimates, the observed
values of r2

t-j from j=200 through j=0, and equation 9, we obtain forecast values of the standard deviations over the interval from t to
t+40.In obtaining the RLS forecasts we set J=200 in equations 8 and 9, that is we use only the 200 most recent squared return
deviations to forecast the future standard deviation. This saves considerable computing time for all our models in all our markets, and
observations before t-200 have an inconsequential effect on the forecast.  For instance for $=.97, the implied coefficient of r2

t-200  is

ENDNOTES



only 0.23% of the coefficient of rt
2.  Note that RLS minimizes the variance of the volatility forecast error where this error is defined in

terms of the variance.  This is not quite the same as minimizing the in-sample RMSFE since the latter was defined in terms of the
standard deviation but comes quite close

10.  As Schmidt (1974) points out, for $<1, the term $j eventually dominates the ji  terms as the length of the lag  j increases so the
weights on distant observations eventually decline toward zero.  However, for values of $ close to one, this decline may not occur
until the lags are quite long.  Consequently, we also estimated a least squares model in which the lag coefficients taper off more
quickly based on both Schmidt’s model and the polynomial inverse lag model of  Mitchell and Speaker (1986).  Results for this model
are not presented here since they are very similar to the SCH model.

11.  A similar tendency has been observed within the GARCH type estimators by Baillie, Bollerslev, and Mikkelsen (1996) and
Bollerslev and Mikkelsen (1996).  The FIGARCH model developed in those papers provides a form to correct this tendency.

12.  In order to show clearly implied coefficient differences at longer lags, the implied GARCH coefficients at the shortest lags are off
the charts for the S&P500 in Figure 2a and Eurodollars in Figure 2c.

13.  Of course, the historical standard deviation forecasts, STD(n), and EWMA forecasts reported in Table 1 are out-of-sample since
the weights are fixed.  

14.    For example, the RLS and GEN models are first estimated using observations 201 (since J=200 in the RLS model) through 1460. 
The estimated model and r2 observations before 1500 are then used to forecast volatility over the 40-day period from day 1501 to day
1540.  The same parameter estimates but r2 observations up through day 1501 are used to generate the volatility forecasts for the
interval from day 1502 to day 1541 and this procedure is repeated for the next 38 days using unchanged parameters.  However, when
the time comes to forecast volatility over the interval from day 1541 to 1580, the models are re-estimated using data from day 241
through day 1500, these new parameter estimates are used to generate volatility forecasts for the next 40 days and this process is
repeated.

15.  The null that the GARCH and EGARCH forecasts are equally accurate is rejected in two markets: Eurodollars and International
Paper where the results favor GARCH.  The Diebold-Marino test statistic could not be calculated in the 3M market because it involved
taking the square root of a negative number.

16.  As reported in the Appendix, GARCH also looks somewhat better versus EGARCH when the forecast error is measured in terms
of the mean absolute error instead of the RMSFE.
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